Search results for "Laboratorium voor Entomologie"

showing 10 items of 33 documents

Volatile-mediated foraging behaviour of three parasitoid species under conditions of dual insect herbivore attack

2016

Infochemicals play an important role in structuring intra-and interspecific interactions. Many parasitoid wasp species rely on herbivory or oviposition-induced plant volatiles (HIPVs/OIPVs) to locate their herbivorous hosts, and must cope with variation in the volatile blends due to factors such as plant/host species, herbivore density or attack by several herbivores. However, little is known about how dual herbivory or changes in herbivore density affect multiple parasitoid species, each attacking a different herbivore, in the same system. In a natural system, we investigated the effect of dual attack on the ability of three parasitoid species to differentiate between volatiles induced by …

0106 biological sciences010603 evolutionary biology01 natural sciencesMultitrophic interactionParasitoid waspParasitoidMultiple attackMultitrophic interactionsHerbivore-induced plant volatilesBotanyLaboratory of EntomologyEcology Evolution Behavior and Systematics016-3906Pieris brassicaeAphidbiologyDiaeretiella rapaeOviposition-induced plant volatilesHerbivore-induced plant volatileTrichogramma brassicaebiology.organism_classificationCotesia glomerataPE&RCLaboratorium voor EntomologieBiosystematiekSettore AGR/11 - Entomologia Generale E ApplicataBrevicoryne brassicaeIndirect defenceBiosystematicsAnimal Science and ZoologyEPS010606 plant biology & botany
researchProduct

Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications

2018

Chemical communication is ubiquitous. The identification of conserved structural elements in visual and acoustic communication is well established, but comparable information on chemical communication displays (CCDs) is lacking. We assessed the phenotypic integration of CCDs in a meta‐analysis to characterize patterns of covariation in CCDs and identified functional or biosynthetically constrained modules. Poorly integrated plant CCDs (i.e. low covariation between scent compounds) support the notion that plants often utilize one or few key compounds to repel antagonists or to attract pollinators and enemies of herbivores. Animal CCDs (mostly insect pheromones) were usually more integrated t…

0106 biological sciences0301 basic medicineEco evolutionaryanalysisPhysiologyPlant ScienceAnimal Breeding and GenomicsBiologyfloral scentsChemical communicationFloral scentsphenotypic integration010603 evolutionary biology01 natural sciencesChemical communication03 medical and health sciencesPhenotypic integrationbiosynthetic constraintsFokkerij en Genomicavegetative scentsLaboratory of Entomologycorrelation networkEcologyOrganic Chemistrychemical communicationPhenotypic integrationInsect pheromonesPE&RCLaboratorium voor Entomologiecorrelation network analysisOrganische ChemieCorrelation network analysisBiosynthetic constraints030104 developmental biologyEvolutionary biologyinternationalFloral scentIdentification (biology)EPSVegetative scentsNew Phytologist
researchProduct

Disentangling higher trophic level interactions in the cabbage aphid food web using high-throughput DNA sequencing

2017

International audience; The lack of understanding of complex food-web interactions has been a major gap in the history of biological control. In particular, a better understanding of the functioning of pest food-webs and how they vary between native and invaded geographical ranges is of prime interest for biological control research and associated integrated pest management. Technical limitations associated with the deciphering of complex food-webs can now be largely overcome by the use of high throughput DNA sequencing techniques such as Illumina MiSeq. We tested the efficiency of this next generation sequencing technology in a metabarcoding approach, to study aphid food-webs using the cab…

0106 biological sciences0301 basic medicineIntegrated pest managementhyperparasitoidsRange (biology)media_common.quotation_subjectBiological pest controlbiological controlmetabarcoding biological control enemy release hypothesis hyperparasitism parasitoids hyperparasitoids competition010603 evolutionary biology01 natural sciencesCompetition (biology)DNA sequencingenemy release hypothesis03 medical and health sciencesGeneticsLaboratory of EntomologyMolecular BiologyQH540-549.5Nature and Landscape Conservationmedia_commonTrophic levelEnemy release hypothesisHyperparasitismHyperparasitoidsAphidCompetitionParasitoidsEcologybiologyEcologyLaboratorium voor Entomologiebiology.organism_classificationparasitoids[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicataBiological controlenemy releasmetabarcodingMetabarcodingAnimal Science and ZoologyPEST analysisEPShyperparasitismcompetition
researchProduct

First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role.

2018

The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functio…

0106 biological sciences0301 basic medicinePhysiologyGlycosylasesWaspsVenomLaccasesHymenopteraInsectmelanization01 natural sciencesvirulence factorParasitoidTranscriptomePhysiological suppressionLaboratory of EntomologyArthropod Venomsmedia_commonLarvabiologyVirulence factorsPhenotypeNezara viridulalaccazesInsect ProteinsFemaleMelanizationmedia_common.quotation_subjectZoologycomplex mixturesHost-Parasite InteractionsHeteroptera03 medical and health sciencesglycosylasesExocrine GlandsMicroscopy Electron TransmissionAnimalsPeptidaseHost (biology)Laccasefungibiology.organism_classificationLaboratorium voor Entomologiephysiological suppression010602 entomology030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicatapeptidasesInsect ScienceEPS[SDE.BE]Environmental Sciences/Biodiversity and EcologyPeptidasesTranscriptomeGlycosylaseJournal of insect physiology
researchProduct

Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids

2018

Symbiotic relationships benefit organisms in utilization of new niches. In parasitoid wasps, symbiotic viruses and venom that are injected together with wasp eggs into the host caterpillar suppress immune responses of the host and enhance parasitoid survival. We found that the virus also has negative effects on offspring survival when placing these interactions in a community context. The virus and venom drive a chain of interactions that includes the herbivore and its food plant and attracts the hyperparasitoid enemies of the parasitoid. Our results shed new light on the importance of symbionts associated with their host in driving ecological interactions and highlight the intricacy of how…

0106 biological sciences0301 basic medicineWasps01 natural sciencesMultitrophic interactionParasitoidHerbivore-induced plant volatilesGene Expression Regulation PlantLaboratory of EntomologyTrophic levelPlant-mediatedLarvaMultidisciplinarybiologyPolydnavirusHerbivore-induced plant volatilePlantsBiological SciencesWaspPE&RCOrganische ChemieBiosystematiekInteraction networkinternationalLarvaSymbiosiButterfliesZoology010603 evolutionary biologyHost-Parasite Interactions03 medical and health sciencesMultitrophic interactionsSymbiosisButterflieAnimalsSymbiosisCaterpillarSalivaEcosystemHerbivoreParasitic waspVenomsHost (biology)AnimalOrganic ChemistryfungiPlantLaboratorium voor Entomologiebiology.organism_classificationVenom030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicataPolydnaviridaeHerbivoreBiosystematicsEPS
researchProduct

Foraging behaviour of an egg parasitoid exploiting plant volatiles induced by pentatomids : The role of adaxial and abaxial leaf surfaces

2017

Several phases of herbivorous insect attack including feeding and oviposition are known to induce plant defenses. Plants emit volatiles induced by herbivores to recruit insect parasitoids as an indirect defense strategy. So far, volatiles induced by herbivore walking and their putative role in the foraging behavior of egg parasitoids have not been investigated. In this paper we studied the response of the egg parasitoid Trissolcus basalis toward volatiles emitted by Vicia faba plants as consequence of the walking activity of the host Nezara viridula. Olfactometer bioassays were carried out to evaluate wasp responses to plants in which the abaxial or the adaxial surfaces were subjected to wa…

0106 biological sciences0301 basic medicinemedia_common.quotation_subjectLeaf surfaceOvipositionlcsh:MedicineInsectPlant ScienceChemical ecology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyParasitoid03 medical and health sciencesBotanyPlant defense against herbivoryWalking activityLaboratory of EntomologyTrissolcus basalisChemical ecology; Leaf surface; Nezara viridula; Oviposition; Trissolcus basalis; Walking activity; Neuroscience (all); Medicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)media_commonHerbivoreNeuroscience (all)Biochemistry Genetics and Molecular Biology (all)biologyHost (biology)Medicine (all)General NeuroscienceChemical ecology; Leaf surface; Nezara viridula; Oviposition; Trissolcus basalis; Walking activitylcsh:RfungiNezara viridulafood and beveragesTrissolcus basaliGeneral Medicinebiology.organism_classificationLaboratorium voor EntomologieChemical ecology010602 entomologySettore AGR/11 - Entomologia Generale E Applicata030104 developmental biologyAgricultural and Biological Sciences (all)OlfactometerNezara viridulaEPSGeneral Agricultural and Biological SciencesEntomology017-4020PeerJ
researchProduct

Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity

2019

Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of th…

0106 biological sciencesFood ChainSDG 16 - PeaceForagingWaspsContext (language use)010603 evolutionary biology01 natural sciencesMultitrophic interactionParasitoidPlant-Microbe-Animal Interactions–Original ResearchHost-Parasite InteractionsHyperparasitoid foraging behaviorFourth trophic level organismsMultitrophic interactionsFourth trophic level organismButterflieAnimalsNon-host parasitoid specieHerbivoryLaboratory of EntomologyEcology Evolution Behavior and SystematicsTrophic levelPieris brassicaeHerbivorebiologyHost (biology)EcologyAnimal010604 marine biology & hydrobiologySDG 16 - Peace Justice and Strong InstitutionsnationalHost-Parasite Interactionbiology.organism_classificationCotesia glomerataPE&RCLaboratorium voor Entomologie/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsJustice and Strong InstitutionsPlant-based food webLarvaEPSButterfliesNon-host parasitoid speciesOecologia
researchProduct

Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems

2019

Insects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels. Here, we synthesize advances in understanding of insect foraging behavior in complex habitats by comparing trophic levels in specialist host-parasitoid-hyperparasitoid systems. We argue that resources may become less apparent to foraging insects when they are member of higher trophic …

0106 biological sciencesForage (honey bee)Food ChainInsectaForagingBiology010603 evolutionary biology01 natural sciencesCuePredationFood chainVolatile Organic CompoundLife ScienceAnimalsHerbivoryLaboratory of EntomologyEcology Evolution Behavior and SystematicsTrophic levelHerbivoreAppetitive BehaviorVolatile Organic CompoundsEcologyHost (biology)AnimalfungiFarm Systems Ecology GroupPlantPlantsPE&RCLaboratorium voor Entomologie010602 entomologySettore AGR/11 - Entomologia Generale E ApplicataHabitatInsect ScienceEPSCuesCurrent Opinion in Insect Science
researchProduct

Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects

2019

Significance The use of insecticides in agriculture is one of the suggested causes of the decline in insect populations. Neonicotinoids are among the most widely used insecticides. However, they have important negative side effects, especially for pollinators and other beneficial insects feeding on floral nectar and pollen. We identified an exposure route: Neonicotinoids reach and kill beneficial insects when they feed on the most abundant carbohydrate source for insects in agroecosystems, honeydew. Honeydew is the excretion product of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, or psyllids. This route of exposure is likely to affect a much wider range of benefi…

0106 biological sciencesHoneydewInsectaPhloemBiology010603 evolutionary biology01 natural sciencesBiological control agentsToxicologyNeonicotinoidschemistry.chemical_compoundPollinatorImidaclopridAnimalsNectarBeneficial insectsLaboratory of EntomologyMultidisciplinaryAgricultural Sciencesbusiness.industryPollinatorsfungiNeonicotinoidPest controlfood and beveragesFeeding BehaviorBiological SciencesPE&RCEnvironmental risk assessmentLaboratorium voor EntomologieSurvival AnalysisCucurbitaceae010602 entomologyHoneydewchemistryThiamethoxamEPSbusinessThiamethoxam
researchProduct

Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests

2020

Abstract Insect hyperparasitoids are fourth trophic level organisms that commonly occur in terrestrial food webs, yet they are relatively understudied. These top‐carnivores can disrupt biological pest control by suppressing the populations of their parasitoid hosts, leading to pest outbreaks, especially in confined environments such as greenhouses where augmentative biological control is used. There is no effective eco‐friendly strategy that can be used to control hyperparasitoids. Recent advances in the chemical ecology of hyperparasitoid foraging behavior have opened opportunities for manipulating these top‐carnivores in such a way that biological pest control becomes more efficient. We p…

0106 biological sciencesIntegrated pest managementBiological pest controlReview01 natural sciencespush-pullhyperparasitoid foraginginfochemical-based strategieLaboratory of Entomology/dk/atira/pure/sustainabledevelopmentgoals/industry_innovation_and_infrastructureinfochemical‐based strategiesTrophic levelEcologyPlan_S-Compliant-TAParasietenEnvironmental resource managementherbivore‐induced plant volatilespush‐pullGeneral MedicineChemical ecologyfourth trophic level organismherbivore-induced plant volatileinternationalSDG 9 - IndustryFood ChainForagingDuurzame gewasbeschermingEarly detectionmultitrophic interactionsBiologyHost-Parasite InteractionsGeleedpotigenAnimalsmultitrophic interactionfourth trophic level organismsInnovationPest Control BiologicalArthropodsbusiness.industryherbivore-induced plant volatilesLaboratorium voor Entomologiebiology.organism_classification010602 entomologyInsect Scienceand InfrastructureSDG 9 - Industry Innovation and InfrastructurePEST analysisArthropodEPSinfochemical-based strategiesbusinessAgronomy and Crop Science010606 plant biology & botanyPest Management Science
researchProduct